Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.339
Filtrar
1.
Sci Rep ; 14(1): 5439, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443469

RESUMO

The objective of this study was to determine whether adding phytoncide oil (PO) and soybean oil (SBO) to the dairy cow diet could increase milk conjugated linoleic acid (CLA) and depress methane (CH4) emissions in Holstein dairy cows. Rumen fermentation was conducted at four levels of SBO (0, 1, 2, and 4%, on DM basis) and two levels of PO (0 and 0.1%, on DM basis) with in vitro experiment. To evaluate blood parameters, fecal microbe population, milk yield and fatty acid compositions, and CH4 production, in vivo experiment was conducted using 38 Holstein dairy cows divided into two groups of control (fed TMR) and treatment (fed TMR with 0.1% PO and 2% SBO as DM basis). In the in vitro study (Experiment 1), PO or SBO did not affect rumen pH. However, SBO tended to decrease ruminal ammonia-N (p = 0.099). Additionally, PO or SBO significantly decreased total gas production (p = 0.041 and p = 0.034, respectively). Both PO and SBO significantly decreased CH4 production (p < 0.05). In addition, PO significantly increased both CLA isomers (c9, t11 and t10, c12 CLA) (p < 0.001). Collectively, 0.1% PO and 2% SBO were selected resulting in most effectively improved CLA and decreased CH4 production. In the in vivo study (Experiment 2), 0.1% PO with 2% SBO (PSO) did not affect complete blood count. However, it decreased blood urea nitrogen and magnesium levels in blood (p = 0.021 and p = 0.01, respectively). PSO treatment decreased pathogenic microbes (p < 0.05). It increased milk yield (p = 0.017) but decreased percentage of milk fat (p = 0.013) and MUN level (p < 0.01). In addition, PSO treatment increased both the concentration of CLA and PUFA in milk fat (p < 0.01). Finally, it decreased CH4 emissions from dairy cows. These results provide compelling evidence that a diet supplemented with PSO can simultaneously increase CLA concentration and decrease CH4 production with no influence on the amount of milk fat (kg/day) in Holstein dairy cows.


Assuntos
Ácidos Linoleicos Conjugados , Leite , Monoterpenos , Animais , Feminino , Bovinos , Ácidos Linoleicos Conjugados/farmacologia , Óleo de Soja , Suplementos Nutricionais , Metano
2.
J Agric Food Chem ; 72(11): 5503-5525, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442367

RESUMO

Conjugated linoleic acid (CLA) has been extensively characterized due to its many biological activities and health benefits, but conjugated linolenic acid (CLnA) is still not well understood. However, CLnA has shown to be more effective than CLA as a potential functional food ingredient. Current research has not thoroughly investigated the differences and advantages between CLnA and CLA. This article compares CLnA and CLA based on molecular characteristics, including structural, chemical, and metabolic characteristics. Then, the in vivo research evidence of CLnA on various health benefits is comprehensively reviewed and compared with CLA in terms of effectiveness and mechanism. Furthermore, the potential of CLnA in production technology and product protection is analyzed. In general, CLnA and CLA have similar physicochemical properties of conjugated molecules and share many similarities in regulation effects and pathways of various health benefits as well as in the production methods. However, their specific properties, regulatory capabilities, and unique mechanisms are different. The superior potential of CLnA must be specified according to the practical application patterns of isomers. Future research should focus more on the advantageous characteristics of different isomers, especially the effectiveness and safety in clinical applications in order to truly exert the potential value of CLnA.


Assuntos
Ingredientes de Alimentos , Ácidos Linoleicos Conjugados , Ácido alfa-Linolênico/química , Ácidos Linoleicos Conjugados/química , Isomerismo , Alimento Funcional
3.
Cell Biochem Funct ; 42(2): e3937, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329451

RESUMO

The antiobesity effect of conjugated linoleic acid (CLA) has been reported. However, the underlying mechanisms have not been fully clarified. Thus, this study aimed to investigate the effects of CLA on thermogenesis of interscapular brown adipose tissue (iBAT) and browning of inguinal subcutaneous white adipose tissue (iWAT) and explore the possible signaling pathway. The in vivo results showed that CLA enhanced the O2 consumption and heat production in HFD (high-fat diet)-fed female mice by roughly 38%. Meanwhile, CLA increased the average iBAT temperature by 2°C at the room temperature and cold exposure, respectively. Correspondingly, CLA caused 1.6- and 2.4-fold increases in the expression of UCP1 (uncoupling protein 1) of BAT and iWAT, respectively, suggesting the activated iBAT thermogenesis and iWAT browning in HFD-fed female mice. Meanwhile, CLA could promote the formation of brown and beige adipocytes in differentiated stromal vascular cells (SVCs) isolated from iBAT and iWAT (the expressions of UCP1 were promoted by about twofold changes). In possible mechanisms, CLA stimulated the expression of CD36 and the activation of the AMPK pathway in mice iBAT and iWAT as well as the differentiated SVCs. However, inhibition of CD36 and AMPK (adenosine 5'-monophosphate-activated protein kinase) abolished the promotive effects of CLA on brown and beige adipocytes formation. Hence, we showed that CLA reduced HFD-induced obesity through enhancing iBAT thermogenesis and iWAT browning via the  CD36-AMPK pathway.


Assuntos
Adipócitos Bege , Ácidos Linoleicos Conjugados , Feminino , Animais , Camundongos , Ácidos Linoleicos Conjugados/farmacologia , Proteínas Quinases Ativadas por AMP , Obesidade/tratamento farmacológico , Termogênese
4.
Environ Sci Pollut Res Int ; 31(13): 20665-20677, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38381288

RESUMO

Micellar-enhanced ultrafiltration (MEUF) technology is an effective method to treat low-concentration heavy metal wastewater. However, the leakage of surfactants in the ultrafiltration (UF) process will inevitably cause secondary pollution. In this study, a biosurfactant of conjugated linoleic acid (CLA) with conjugated double bonds was selected to bind its micelles by simple thermal crosslinking to obtain morphologically stable stearic acid (SA) nanoparticles. The pure SA nanoparticles were obtained by repeated dialysis. The stability of the SA nanoparticles was verified by comparing the particle size distribution and solubility of the materials before and after crosslinking at different pH levels. The effectiveness of SA nanoparticle-enhanced UF in removing heavy metals was verified by exploring the adsorption performance of SA nanoparticles. The dialysis device was used to simplify the UF device, wherein SA nanoparticles were assessed as adsorbents for the elimination of Cu2+, Pb2+, and Cd2+ ions from aqueous solutions under diverse process parameters, including pH, contact time, metal ion concentration, and coexisting ions. The findings indicate that the SA nanoparticles have no evidence of secondary contamination in UF and exhibit compatibility with a broad pH range and coexisting ions. The maximum adsorption capacities for Cu2+, Pb2+, and Cd2+ were determined to be 152.77, 403.56, and 271.46 mg/g, respectively.


Assuntos
Ácidos Linoleicos Conjugados , Metais Pesados , Poluentes Químicos da Água , Cádmio , Micelas , Água , Chumbo , Metais Pesados/química , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cinética
5.
J Nanobiotechnology ; 22(1): 50, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317220

RESUMO

Obesity is a major risk to human health. Adipogenesis is blocked by α-tocopherol and conjugated linoleic acid (CLA). However, their effect at preventing obesity is uncertain. The effectiveness of the bioactive agents is associated with their delivery method. Herein, we designed CLA-loaded tocol nanostructured lipid carriers (NLCs) for enhancing the anti-adipogenic activity of α-tocopherol and CLA. Adipogenesis inhibition by the nanocarriers was examined using an in vitro adipocyte model and an in vivo rat model fed a high fat diet (HFD). The targeting of the tocol NLCs into adipocytes and adipose tissues were also investigated. A synergistic anti-adipogenesis effect was observed for the combination of free α-tocopherol and CLA. Nanoparticles with different amounts of solid lipid were developed with an average size of 121‒151 nm. The NLCs with the smallest size (121 nm) showed greater adipocyte internalization and differentiation prevention than the larger size. The small-sized NLCs promoted CLA delivery into adipocytes by 5.5-fold as compared to free control. The nanocarriers reduced fat accumulation in adipocytes by counteracting the expression of the adipogenic transcription factors peroxisome proliferator activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α, and lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Localized administration of CLA-loaded tocol NLCs significantly reduced body weight, total cholesterol, and liver damage indicators in obese rats. The biodistribution study demonstrated that the nanoparticles mainly accumulated in liver and adipose tissues. The NLCs decreased adipocyte hypertrophy and cytokine overexpression in the groin and epididymis to a greater degree than the combination of free α-tocopherol and CLA. In conclusion, the lipid-based nanocarriers were verified to inhibit adipogenesis in an efficient and safe way.


Assuntos
Adipogenia , Ácidos Linoleicos Conjugados , Tocoferóis , Masculino , Humanos , Ratos , Animais , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Distribuição Tecidual , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo
6.
Int J Biol Macromol ; 261(Pt 2): 129773, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296128

RESUMO

Nanocomplexes (NCs) were formed through electrostatic complexation theory using Na-caseinate (NaCa), gum Arabic (GA), and Prunus armeniaca L. gum exudates (PAGE), aimed to encapsulate Conjugated linoleic acid (CLA). Encapsulation was optimized using NaCa (0.1 %-0.5 %), GA/PAGE (0.1 %-0.9 %) and CLA (1 %-5 %), and central composite design (CCD) was employed for numerical optimization. The optimum conditions for NC containing GA (NCGA) were 0.336 %, 0.437 %, and 3.10 % and for NC containing PAGE (NCPAGE) were 0.403 %, 0.730 %, and 4.177 %, of NaCa, GA/PAGE, and CLA, respectively. EE and particle size were 92.46 % and 52.89 nm for NCGA while 88.23 % and 54.76 nm for NCPAGE, respectively. Fourier transform infrared spectroscopy (FTIR) indicated that CLA was physically entrapped. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the electrostatic complex formation. The elastic modulus was predominant for NCGA and NCPAGE dispersions while the complex viscosity of NCPAGE suspension was slightly higher than that of NCGA. The CLA in NCGA-CLA and NCPAGE-CLA exhibited higher oxidative stability than free CLA during 30 days of storage without a significant difference between the results of CLA oxidative stability tests obtained for NCs. Consequently, NCPAGE and NCGA could be applied for the entrapment and protection of nutraceuticals in the food industry.


Assuntos
Ácidos Linoleicos Conjugados , Prunus armeniaca , Goma Arábica/química , Caseínas/química , Tamanho da Partícula
7.
Mar Biotechnol (NY) ; 26(1): 169-180, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224425

RESUMO

The relationship between conjugated linoleic acid (CLA) and lipogenesis has been extensively studied in mammals and some cell lines, but it is relatively rare in fish, and the potential mechanism of action of CLA reducing fat mass remains unclear. The established primary culture model for studying lipogenesis in grass carp (Ctenopharyngodon idella) preadipocytes was used in the present study, and the objective was to explore the effects of CLA on intracellular lipid and TG content, fatty acid composition, and mRNA levels of adipogenesis transcription factors, lipase, and apoptosis genes in grass carp adipocytes in vitro. The results showed that CLA reduced the size of adipocyte and lipid droplet and decreased the content of intracellular lipid and TG, which was accompanied by a significant down-regulation of mRNA abundance in transcriptional regulators including peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding protein (C/EBP) α, sterol regulatory element-binding protein (SREBP) 1c, lipase genes including fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL). Meanwhile, it decreased the content of saturated fatty acids (SFAs) and n - 6 polyunsaturated fatty acid (n-6 PUFA) and increased the content of monounsaturated fatty acid (MUFA) and n - 3 polyunsaturated fatty acid (n-3 PUFA) in primary grass carp adipocyte. In addition, CLA induced adipocyte apoptosis through downregulated anti-apoptotic gene B-cell CLL/lymphoma 2 (Bcl-2) mRNA level and up-regulated pro-apoptotic genes tumor necrosis factor-α (TNF-α), Bcl-2-associated X protein (Bax), Caspase-3, and Caspase-9 mRNA level in a dose-dependent manner. These findings suggest that CLA can act on grass carp adipocytes through various pathways, including decreasing adipocyte size, altering fatty acid composition, inhibiting adipocyte differentiation, promoting adipocyte apoptosis, and ultimately decreasing lipid accumulation.


Assuntos
Carpas , Ácidos Graxos Ômega-3 , Ácidos Linoleicos Conjugados , Animais , Lipogênese/genética , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , Regulação para Cima , Regulação para Baixo , Carpas/genética , Carpas/metabolismo , Adipócitos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Lipase/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
8.
J Agric Food Chem ; 72(4): 2120-2134, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235560

RESUMO

Oxidative stress is tightly associated with liver dysfunction and injury in dairy cows. Previous studies have shown that cis-9, trans-11 conjugated linoleic acid (CLA) possesses anti-inflammatory and antioxidative abilities. In this study, the bovine hepatocytes were pretreated with CLA for 6 h, followed by treatment with hydrogen peroxide (H2O2) for another 6 h to investigate the antioxidative effect of CLA and uncover the underlying mechanisms. The results demonstrated that H2O2 treatment elevated the level of mitophagy, promoted mitochondrial DNA (mtDNA) leakage into the cytosol, and activated the stimulator of interferon genes (STING)/nuclear factor kappa B (NF-κB) signaling pathway to trigger an inflammatory response in bovine hepatocytes. In addition, the dynamin-related protein 1(DRP1)-mtDNA-STING-NF-κB axis contributed to the H2O2-induced oxidative injury of bovine hepatocytes. CLA could reduce mitophagy and the inflammatory response to attenuate oxidative damage via the DRP1/mtDNA/STING pathway in bovine hepatocytes. These findings offer a theoretical foundation for the hepatoprotective effect of CLA against oxidative injury in dairy cows.


Assuntos
Peróxido de Hidrogênio , Ácidos Linoleicos Conjugados , Feminino , Bovinos , Animais , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , DNA Mitocondrial , NF-kappa B/genética , NF-kappa B/metabolismo , Mitofagia , Antioxidantes/metabolismo , Hepatócitos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética
9.
Free Radic Biol Med ; 213: 102-112, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38218550

RESUMO

Oxidative stress, hyperactivation of compensatory mechanisms (unfolded protein response, UPR; nuclear factor erythroid 2-related factor 2, Nrf2) and the stimulation of maladaptive response (inflammation/apoptosis) are interconnected pathogenic processes occurring during Alzheimer's disease (AD) progression. The neuroprotective ability of dietary Conjugated linoleic acid (CLAmix) in a mouse model of AlCl3-induced AD was recently described but, the effects of AlCl3 or CLAmix intake on these pathogenic processes are still unknown. The effects of dietary AlCl3 or CLAmix - alone and in combination - were examined in the brain cortex of twenty-eight BalbC mice divided into 4 groups (n = 7 each). The neurotoxic effects of AlCl3 were investigated in animals treated for 5 weeks with 100 mg/kg/day (AL). CLAmix supplementation (600 mg/kg bw/day) for 7 weeks (CLA) was aimed at evaluating its modulatory effects on the Nrf2 pathway while its co-treatment with AlCl3 during the last 5 weeks of CLAmix intake (CLA + AL) was used to investigate its neuroprotective ability. Untreated mice were used as controls. In the CLA group, the NADPH oxidase (NOX) activation in the brain cortex was accompanied by the modulation of the Nrf2 pathway. By contrast, in the AL mice, the significant upregulation of oxidative stress markers, compensatory pathways (UPR/Nrf2), proinflammatory cytokines (IL-6, TNFα) and the proapoptotic protein Bax levels were found as compared with control. Notably, in CLA + AL mice, the marked decrease of oxidative stress, UPR/Nrf2 markers and proinflammatory cytokines levels were associated with the significant increase of the antiapoptotic protein Bcl2. The involvement of NOX in the adaptive response elicited by CLAmix along with its protective effects against the onset of several pathogenic processes triggered by AlCl3, broadens the knowledge of the mechanism underlying the pleiotropic activity of Nrf2 activators and sheds new light on their potential therapeutic use against neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Ácidos Linoleicos Conjugados , Camundongos , Animais , Ácidos Linoleicos Conjugados/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Dieta , Estresse Oxidativo , Encéfalo/metabolismo , Doença de Alzheimer/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Citocinas/metabolismo
10.
Biol Trace Elem Res ; 202(2): 513-526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37099221

RESUMO

Although conjugated linoleic acid (CLA) can promote human health, its content in milk is insufficient to have a significant impact. The majority of the CLA in milk is produced endogenously by the mammary gland. However, research on improving its content through nutrient-induced endogenous synthesis is relatively scarce. Previous research found that the key enzyme, stearoyl-CoA desaturase (SCD) for the synthesis of CLA, can be expressed more actively in bovine mammary epithelial cells (MAC-T) when lithium chloride (LiCl) is present. This study investigated whether LiCl can encourage CLA synthesis in MAC-T cells. The results showed that LiCl effectively increased SCD and proteasome α5 subunit (PSMA5) protein expression in MAC-T cells as well as the content of CLA and its endogenous synthesis index. LiCl enhanced the expression of proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), and its downstream enzymes acetyl CoA carboxylase (ACC), fatty acid synthase (FASN), lipoprotein lipase (LPL), and Perilipin 2 (PLIN2). The addition of LiCl significantly enhanced p-GSK-3ß, ß-catenin, p-ß-catenin protein expression, hypoxia-inducible factor-1α (HIF-1α), and downregulation factor genes for mRNA expression (P < 0.05). These findings highlight that LiCl can increase the expression of SCD and PSMA5 by activating the transcription of HIF-1α, Wnt/ß-catenin, and the SREBP1 signaling pathways to promote the conversion of trans-vaccenic acid (TVA) to the endogenous synthesis of CLA. This data suggests that the exogenous addition of nutrients can increase CLA content in milk through pertinent signaling pathways.


Assuntos
Ácidos Linoleicos Conjugados , Cloreto de Lítio , Humanos , Animais , Bovinos , Cloreto de Lítio/farmacologia , Cloreto de Lítio/análise , Cloreto de Lítio/metabolismo , beta Catenina/metabolismo , Ácidos Linoleicos Conjugados/análise , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Glicogênio Sintase Quinase 3 beta/análise , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Glândulas Mamárias Animais/metabolismo , Leite/química , Estearoil-CoA Dessaturase , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo
11.
Nutr Rev ; 82(2): 262-276, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37221703

RESUMO

Studies have reported the potential benefits of consuming conjugated linoleic acid (CLA) and ruminant trans fatty acids (R-TFAs) in reducing the risk factors of metabolic syndrome (MetS). In addition, encapsulation of CLA and R-TFAs may improve their oral delivery and further decrease the risk factors of MetS. The objectives of this review were (1) to discuss the advantages of encapsulation; (2) to compare the materials and techniques used for encapsulating CLA and R-TFAs; and (3) to review the effects of encapsulated vs non-encapsulated CLA and R-TFAs on MetS risk factors. Examination of papers citing micro- and nano-encapsulation methods used in food sciences, as well as the effects of encapsulated vs non-encapsulated CLA and R-TFAs, was conducted using the PubMed database. A total of 84 papers were examined; of these, 18 studies were selected that contained information on the effects of encapsulated CLA and R-TFAs. The 18 studies that described encapsulation of CLA or R-TFAs indicated that micro- or nano-encapsulation processes stabilized CLA and prevented oxidation. CLA was mainly encapsulated using carbohydrates or proteins. So far, oil-in-water emulsification followed by spray-drying were the frequently used techniques for encapsulation of CLA. Further, 4 studies investigated the effects of encapsulated CLA on MetS risk factors compared with non-encapsulated CLA. A limited number of studies investigated the encapsulation of R-TFAs. The effects of encapsulated CLA or R-TFAs on the risk factors for MetS remain understudied; thus, additional studies comparing the effects of encapsulated and non-encapsulated CLA or R-TFAs are needed.


Assuntos
Ácidos Linoleicos Conjugados , Síndrome Metabólica , Ácidos Graxos trans , Animais , Humanos , Ácidos Graxos trans/efeitos adversos , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Síndrome Metabólica/prevenção & controle , Ruminantes/metabolismo , Ácidos Graxos
12.
Prog Lipid Res ; 93: 101257, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898352

RESUMO

Conjugated linoleic acid (CLA) is a functional food ingredient with prebiotic properties that provides health benefits for various human pathologies and disorders. However, limited natural CLA sources in animals and plants have led microorganisms like Lactobacillus and Bifidobacterium to emerge as new CLA sources. Microbial conversion of linoleic acid to CLA is mediated by linoleic acid isomerase and multicomponent enzymatic systems, with CLA production efficiency dependent on microbial species and strains. Additionally, complex factors like LA concentration, growth status, culture substrates, precursor type, prebiotic additives, and co-cultured microbe identity strongly influence CLA production and isomer composition. This review summarizes advances in the past decade regarding microbial CLA production, including bacteria and fungi. We highlight CLA production and potential regulatory mechanisms and discuss using microorganisms to enhance CLA content and nutritional value of fermented products. We also identify primary microbial CLA production bottlenecks and provide strategies to address these challenges and enhance production through functional gene and enzyme mining and downstream processing. This review aims to provide a reference for microbial CLA production and broaden the understanding of the potential probiotic role of microbial CLA producers.


Assuntos
Ácidos Linoleicos Conjugados , Animais , Humanos , Ácido Linoleico , Lactobacillus , Bactérias , Bifidobacterium
13.
Food Chem ; 439: 138101, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043286

RESUMO

In milk, fat exists in the form of milk fat globules (MFGs). The average size (average fat globules of different particle sizes) is the most common parameter when describing MFG size. There are different views on whether there is a correlation between MFG size and milk fat content. Is the MFG size correlated with milk fat content in ruminants? To address this question, we conducted two experiments. In experiment Ⅰ, dairy cows (n = 40) and dairy goats (n = 30) were each divided into a normal group and a low-fat group according to the milk fat content. In experiment Ⅱ, dairy cows (n = 16) and dairy goats (n = 12) were each divided into a normal group and a conjugated linoleic acid (CLA)-induced low-fat group. The normal groups were fed a basal diet, and the CLA-induced low-fat groups were fed the basal diet + 300 g/d CLA (cows) or the basal diet + 90 g/d CLA (goats). In both experiments, we determined the correlation between MFG size and milk composition and MFG distribution. The results showed that in the normal and low-fat groups of cows and goats, MFG size was not correlated with milk fat, protein, or lactose content or fat-to-protein ratio. Additionally, there was no difference in the distribution of large, medium, and small MFGs (P > 0.05). However, in the CLA-induced low-fat groups, we found a correlation between MFG size and milk fat content and fat-to-protein ratio (R2 > 0.3). Moreover, there was a significant change in the size distribution of MFGs. Therefore, in natural milk, MFG size was not correlated with milk fat content. Following CLA supplementation, MFG size was correlated with milk fat content. Our findings revealed that CLA and not milk fat affects MFG distribution and size.


Assuntos
Lactação , Ácidos Linoleicos Conjugados , Feminino , Bovinos , Animais , Ácidos Graxos/metabolismo , Leite/metabolismo , Dieta/veterinária , Cabras/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Suplementos Nutricionais
14.
Inflammopharmacology ; 32(1): 561-573, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921960

RESUMO

Nitro-conjugated linoleic acid (NO2-CLA) has been observed to manifest salutary signaling responses, including anti-inflammatory and antioxidant properties. Here, the authors have explored the influence and underlying mechanisms of NO2-CLA on the proinflammatory reaction of murine macrophages that were challenged with lipopolysaccharide (LPS) derived from Prevotella intermedia, a putative periodontopathic bacterium. Treatment of LPS-activated RAW264.7 cells with NO2-CLA notably dampened the secretion of iNOS-derived NO, IL-1ß and IL-6 as well as their gene expressions and significantly enhanced the markers for M2 macrophage polarization. NO2-CLA promoted the HO-1 expression in cells challenged with LPS, and tin protoporphyrin IX, an HO-1 inhibitor, significantly reversed the NO2-CLA-mediated attenuation of NO secretion, but not IL-1ß or IL-6. We found that cells treated with NO2-CLA significantly increased mRNA expression of PPAR-γ compared to control cells, and NO2-CLA significantly reverted the decrease in PPAR-γ mRNA caused by LPS. Nonetheless, antagonists to PPAR-γ were unable to reverse the NO2-CLA-mediated suppression of inflammatory mediators. In addition, NO2-CLA did not alter the p38 and JNK activation elicited by LPS. Both NF-κB reporter activity and IκB-α degradation caused by LPS were notably diminished by NO2-CLA. NO2-CLA was observed to interrupt the nuclear translocation and DNA binding of p50 subunits caused by LPS with no obvious alterations in p65 subunits. Further, NO2-CLA attenuated the phosphorylation of STAT1/3 elicited in response to LPS. We propose that NO2-CLA could be considered as a possible strategy for the therapy of periodontal disease, although additional researches are certainly required to confirm this.


Assuntos
Ácidos Linoleicos Conjugados , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Prevotella intermedia/química , Interleucina-6/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , Dióxido de Nitrogênio/metabolismo , Dióxido de Nitrogênio/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Macrófagos , RNA Mensageiro/metabolismo
15.
Br J Nutr ; 131(3): 406-428, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-37671495

RESUMO

Prior meta-analytic investigations over a decade ago rather inconclusively indicated that conjugated linoleic acid (CLA) supplementation could improve anthropometric and body composition indices in the general adult population. More recent investigations have emerged, and an up-to-date systematic review and meta-analysis on this topic must be improved. Therefore, this investigation provides a comprehensive systematic review and meta-analysis of randomised controlled trials (RCT) on the impact of CLA supplementation on anthropometric and body composition (body mass (BM), BMI, waist circumference (WC), fat mass (FM), body fat percentage (BFP) and fat-free mass (FFM)) markers in adults. Online databases search, including PubMed, Scopus, the Cochrane Library and Web of Science up to March 2022, were utilised to retrieve RCT examining the effect of CLA supplementation on anthropometric and body composition markers in adults. Meta-analysis was carried out using a random-effects model. The I2 index was used as an index of statistical heterogeneity of RCT. Among the initial 8351 studies identified from electronic databases search, seventy RCT with ninety-six effect sizes involving 4159 participants were included for data analyses. The results of random-effects modelling demonstrated that CLA supplementation significantly reduced BM (weighted mean difference (WMD): -0·35, 95 % CI (-0·54, -0·15), P < 0·001), BMI (WMD: -0·15, 95 % CI (-0·24, -0·06), P = 0·001), WC (WMD: -0·62, 95% CI (-1·04, -0·20), P = 0·004), FM (WMD: -0·44, 95 % CI (-0·66, -0·23), P < 0·001), BFP (WMD: -0·77 %, 95 % CI (-1·09, -0·45), P < 0·001) and increased FFM (WMD: 0·27, 95 % CI (0·09, 0·45), P = 0·003). The high-quality subgroup showed that CLA supplementation fails to change FM and BFP. However, according to high-quality studies, CLA intake resulted in small but significant increases in FFM and decreases in BM and BMI. This meta-analysis study suggests that CLA supplementation may result in a small but significant improvement in anthropometric and body composition markers in an adult population. However, data from high-quality studies failed to show CLA's body fat-lowering properties. Moreover, it should be noted that the weight-loss properties of CLA were small and may not reach clinical importance.


Assuntos
Ácidos Linoleicos Conjugados , Obesidade , Adulto , Humanos , Peso Corporal , Ácidos Linoleicos Conjugados/farmacologia , Suplementos Nutricionais , Composição Corporal , Índice de Massa Corporal
16.
Food Chem ; 437(Pt 1): 137767, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37879157

RESUMO

Nitrated fatty acids are important anti-inflammatory and protective lipids formed in the gastric compartment, with conjugated linoleic acid (rumenic acid, RA, 9Z,11E-18:2) being the primary substrate for lipid nitration. The recently reported identification of nitrated rumelenic acid (NO2-RLA) in human urine has led to hypothesize that rumelenic acid (RLA, 9Z,11E,15Z-18:3) from dairy fat is responsible for the formation of NO2-RLA. To evaluate the source and mechanism of NO2-RLA formation, 15N labeled standards of NO2-RLA were synthesized and characterized. Afterward, milk fat with different RA and RLA levels was administered to mice in the presence of nitrite, and the appearance of nitrated fatty acids in plasma and urine followed. We confirmed the formation of NO2-RLA and defined the main metabolites in plasma, urine, and tissues. In conclusion, RLA obtained from dairy products is the main substrate for forming this novel electrophilic lipid reported to be present in human urine.


Assuntos
Ácidos Linoleicos Conjugados , Nitratos , Camundongos , Humanos , Animais , Nitratos/química , Nitritos/metabolismo , Dióxido de Nitrogênio , Ácidos Graxos/química , Laticínios , Ácidos Linolênicos
17.
Mol Biol Rep ; 50(12): 10579-10588, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932498

RESUMO

The skeleton is a living organ that undergoes constant changes, including bone formation and resorption. It is affected by various diseases, such as osteoporosis, osteopenia, and osteomalacia. Nowadays, several methods are applied to protect bone health, including the use of hormonal and non-hormonal medications and supplements. However, certain drugs like glucocorticoids, thiazolidinediones, heparin, anticonvulsants, chemotherapy, and proton pump inhibitors can endanger bone health and cause bone loss. New studies are exploring the use of supplements, such as conjugated linoleic acid (CLA) and glucosamine, with fewer side effects during treatment. Various mechanisms have been proposed for the effects of CLA and glucosamine on bone structure, both direct and indirect. One mechanism that deserves special attention is the regulatory effect of RANKL/RANK/OPG on bone turnover. The RANKL/RANK/OPG pathway is considered a motive for osteoclast maturation and bone resorption. The cytokine system, consisting of the receptor activator of the nuclear factor (NF)-kB ligand (RANKL), its receptor RANK, and its decoy receptor, osteoprotegerin (OPG), plays a vital role in bone turnover. Over the past few years, researchers have observed the impact of CLA and glucosamine on the RANKL/RANK/OPG mechanism of bone turnover. However, no comprehensive study has been published on these supplements and their mechanism. To address this gap in knowledge, we have critically reviewed their potential effects. This review aims to assist in developing efficient treatment strategies and focusing future studies on these supplements.


Assuntos
Doenças Ósseas Metabólicas , Ácidos Linoleicos Conjugados , Humanos , Osteoprotegerina/metabolismo , Glucosamina , Doenças Ósseas Metabólicas/metabolismo , Ligante RANK/metabolismo , Osteoclastos/metabolismo
18.
Poult Sci ; 102(12): 103167, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926012

RESUMO

This study aimed to evaluate the immunity of chickens up to 35 d subjected to posthatch fasting and supplementation with conjugated linoleic acid (CLA). A total of 320 chicks were housed in a completely randomized design with a 2 × 2 factorial arrangement (0 or 12 h of fasting × 0.000 or 0.025% CLA in a prestarter diet), totaling 4 treatments (No-F-12 h; F-12 h; No-CLA; CLA) with 8 replicates of 10 birds each. The relative weights (% body weight) of the spleen and bursa were determined 12 h posthatch (Post-12 h) and then weekly. Immunoglobulin Y (IgY) titers against Newcastle disease virus (NDV) were measured by ELISA in the yolk sac contents Post-12 h and in the serum weekly. Hypersensitivity to phytohemagglutinin (PHA) inoculation was evaluated by toe-web swelling response on d 13 and 34, 4 times a day (after 3 h, 6 h, 12 h, and 24 h inoculation, respectively, PHA-3 h, PHA-6 h, PHA-12 h, and PHA-24 h). The data were subjected to analysis of variance (P < 0.05). F-12h reduced the Post-12 h relative weight of the spleen, and CLA reduced the relative weight of the bursa at this stage and at 28 d. At 13 d, F-12 h reduced PHA-3 h, whereas PHA-12 h was increased by CLA. At 34 d, CLA reduced PHA-3 h. A greater reaction was observed in the No-F-12 h-CLA chicks, for the PHA-24 h. In the Post-12 h evaluation, F-12h reduced, whereas CLA increased NDV-specific IgY titers in the yolk sac. No-F-12 h-No-CLA chicks had the lowest serum titers. At 21 d, F-12 h-CLA chicks exhibited the highest serum titers. Titers were higher in the F-12 h-No-CLA chicks, when compared to other treatments. At 28 d, fasting reduced the titers. In conclusion, F-12 h and CLA accelerated the transfer of immunoglobulins from the yolk sac to the serum. F-12 h impairs cellular immunity, whereas CLA favors it.


Assuntos
Galinhas , Ácidos Linoleicos Conjugados , Animais , Galinhas/fisiologia , Ácidos Linoleicos Conjugados/farmacologia , Imunidade Humoral , Dieta/veterinária , Jejum , Ração Animal/análise
19.
Nutr J ; 22(1): 47, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794481

RESUMO

BACKGROUND: The present systematic review and meta-analysis sought to evaluate the effects of conjugated linoleic acid (CLA) supplementation on glycemic control, adipokines, cytokines, malondialdehyde (MDA) and liver function enzymes in patients at risk of cardiovascular disease. METHODS: Relevant studies were obtained by searching the PubMed, SCOPUS and Web of Science databases (from inception to January 2023). Weighted mean differences (WMD) and 95% confidence intervals (CIs) were pooled using a random-effects model. Heterogeneity, sensitivity analysis, and publication bias were reported using standard methods. RESULTS: A pooled analysis of 13 randomized controlled trials (RCTs) revealed that CLA supplementation led to a significant increment in fasting blood glucose (FBG) (WMD: 4.49 mg/dL; 95%CI: 2.39 to 6.59; P < 0.001), and aspartate aminotransferase (AST) (WMD: 2.54 IU/L; 95%CI: 0.06 to 5.01; P = 0.044). Moreover, CLA supplementation decreased leptin (WMD: -1.69 ng/ml; 95% CI: -1.80 to -1.58; P < 0.001), and interleukin 6 (IL-6) (WMD: -0.44 pg/ml; 95%CI: -0.86 to -0.02; P = 0.037). However, there was no effect on hemoglobin A1c (HbA1c), homeostatic model assessment for insulin resistance (HOMA-IR), C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and alanine aminotransferase (ALT) adiponectin compared to the control group. CONCLUSION: Our findings showed the overall favorable effect of CLA supplementation on the adipokines and cytokines including serum IL-6, and leptin, while increasing FBG and AST. It should be noted that the mentioned metabolic effects of CLA consumption were small and may not reach clinical importance. PROSPERO REGISTERATION COD: CRD42023426374.


Assuntos
Doenças Cardiovasculares , Ácidos Linoleicos Conjugados , Humanos , Suplementos Nutricionais , Leptina , Citocinas , Ácidos Linoleicos Conjugados/farmacologia , Interleucina-6 , Adipocinas , Doenças Cardiovasculares/prevenção & controle , Controle Glicêmico , Malondialdeído , Fígado/metabolismo , Glicemia/metabolismo
20.
Food Res Int ; 172: 113158, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689911

RESUMO

Conjugated linoleic acid (CLA) has attracted great attention in recent years as a popular class of functional food that is broadly used. It refers to a group of geometric and positional isomers of linoleic acid (LA) with a conjugated double bond. The main natural sources of CLA are dairy products, beef and lamb, whereas only trace amounts occur naturally in plant lipids. CLA has been shown to improve various health issues, having effects on obesity, inflammatory, anti-carcinogenicity, atherogenicity, immunomodulation, and osteosynthesis. Also, compared to studies on humans, many animal researches reveal more positive benefits on health. CLA represents a nutritional avenue to improve lifestyle diseases and metabolic syndrome. Most of these effects are attributed to the two major CLA isomers [conjugated linoleic acid cis-9,trans-11 isomer (c9,t11), and conjugated linoleic acid trans-10,cis-12 isomer (t10,c12)], and their mixture (CLA mix). In contrast, adverse effects of CLA have been also reported, such as glucose homeostasis, insulin resistance, hepatic steatosis and induction of colon carcinogenesis in humans, as well as milk fat inhibition in ruminants, lowering chicken productivity, influencing egg quality and altering growth performance in fish. This review article aims to discuss the health benefits of CLA as a nutraceutical supplement and highlight the possible mechanisms of action that may contribute to its outcome. It also outlines the feasible adverse effects of CLA besides summarizing the recent peer-reviewed publications on CLA to ensure its efficacy and safety for proper application in humans.


Assuntos
Alimento Funcional , Ácidos Linoleicos Conjugados , Bovinos , Humanos , Animais , Ovinos , Suplementos Nutricionais , Carcinogênese , Galinhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...